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Collateralized Debt Obligations
(CDO) are structured credit vehi-
cles that redistribute credit risk to
meet investor demands for a wide

range of rated securities with scheduled interest
and principal payments. CDOs are securitized
by diversified pools of debt instruments.
Recent developments in credit structuring
technology include the introduction of Collat-
eralized Fund Obligations (CFO).The capital
structure of a Collateralized Fund Obligation
is similar to traditional CDOs, meaning that
investors are offered a spectrum of rated debt
securities and equity interest. Although any
managed fund can be the source of collateral,
the target collateral in these structures tends
to be hedge funds, such as relative value hedge
funds, event-driven hedge funds or com-
modity trading advisors (CTAs), along with
funds that finance the needs of growing com-
panies, such as private equity and mezzanine
funds. Often, a special purpose entity pur-
chases the pool of underlying hedge fund
investments, which are then used as collateral
to back the notes.

These asset-backed notes are also called
tranches. The most senior tranche is usually
rated AAA and is credit-enhanced due to the
subordination of lower tranches. This means
that the lowest tranche, which is typically the
equity tranche, absorbs losses first. When the
equity tranche is exhausted, the next lowest
tranche begins absorbing losses. A CFO may

have an AAA-rated tranche, an AA-rated
tranche, a single A tranche, a BBB rated
tranche and an equity tranche. Exhibit 1 shows
a schematic prototype of a CFO structure. A
CFO can be regarded as a financial structure
with equity investors and lenders where all the
assets, equity and bond are invested in a port-
folio of hedge funds. The lenders earn a spread
over interest rates and the equity holders, usu-
ally the manager of the CFO, earn the total
return of the fund minus the financing fees.

As pointed out in recent articles on this
topic (Mahadevan and Schwartz [2002] and
Stone and Zissu [2004]), both investors and
issuers find CFO securitizations attractive.
Investors, because a triple-A-rated bond will
have a yield similar to that of a triple-A col-
lateralized debt obligation plus a premium,
because with this structure they gain expo-
sure to a diverse collection of hedge funds
through a fund of funds manager. And issuers,
because securitization is a convenient vehicle
for raising funds for an otherwise relatively
illiquid product. Stone and Zissu [2004] pro-
vide a detailed overview of the first securiti-
zation of a fund of funds, the Diversified
Strategies CFO SA, launched in June 2002.
This CFO issued US$251 million in five
tranches, rated AAA, AA, A, BBB and the
equity. Also in June of 2002, lawyers from
the Structured Products Group completed the
second Collateralized Fund Obligation backed
by hedge fund portfolios and assigned ratings

Correlation Breakdown in the
Valuation of Collateralized Fund
Obligations
UNAI ANSEJO, MARCOS ESCOBAR, AITOR BERGARA, 
AND LUIS SECO

UNAI ANSEJO

is a doctoral student at Uni-
verisdad del Pais Vasco in
Bilbao, Spain.
unai.ansejo@consulnor.com

MARCOS ESCOBAR

is an assistant professor in
the Department of Mathe-
matics at Ryerson Univer-
sity in Toronto, Ontario,
Canada.
escobar@ryerson.ca

AITOR BERGARA

is professor in the Depart-
ment of Physics at Uni-
verisdad del Pais Vasco in
Bilbao, Spain.
a.bergara@e.hu.es

LUIS SECO

is professor in the Depart-
ment of Mathematics at
University of Toronto in
Toronto, Ontario, Canada.
seco@math.toronto.edu



by Moody’s Investors Service, Inc. and Standard & Poor’s
Rating Services. The CFO, titled Man Glenwood Alter-
native Strategies I or “MAST I,” issued rated notes
totaling US$374 million and nonrated notes and prefer-
ence shares totaling US$176 million. As the first of their
kind, these CFOs were viewed as a cutting edge trans-
action within the industry and attracted considerable
attention in the financial press.

As far as valuation is concerned, Moody’s in August
2003, began to use HedgeFund.net data to evaluate the
risks of the underlying collateral in order to develop an
accurate Montecarlo-based rating model for CFOs (see
Moody’s [2003]). Although CDOs have attracted much
attention in the academic literature (Hull and White
[2004]; Li [2000], and Laurent and Gregory [2003]), no
effort has been made to develop an analytical rating model
for CFOs.

The credit rating of a CFO tranche depends directly
on the mark-to-market value of the pool of hedge funds.
Collateralized fund obligations tend to be structured as
arbitrage market value CDOs, meaning that the fund of
funds manager focuses efforts on actively managing the
fund to maximize total return while restraining price
volatility within the guidelines of the structure. The diver-
sity of hedge fund investment strategies and the active
management of portfolio positions among strategies ensure
that hedge fund risk and return characteristics are dif-
ferent from those of traditional assets (equities, bonds or
ETFs), as illustrated by numerous articles in the literature
(e.g., Moody’s [2003] and CISDM [2006]). The unique
return and risk characteristics of hedge funds are better
characterized by more general distributions than the usual
multivariate Gaussian approach. Therefore the probability
of default of the different tranches will be also more
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volatile. In addition, lack of transparency within hedge
funds in general makes it more difficult to obtain high-
frequency historical data which leaves investors with no
choice but to calibrate rather complex valuation models
including the typical non-Gaussian behavior of hedge
funds with monthly data.

With the ultimate aim of assessing the model and cal-
ibration risk incurred by CFOs, we develop in this article
an analytical procedure for valuing the different tranches
of a CFO by calculating the probability of default and the
credit spreads from the bonds, and analyzing the pricing
sensitivities to changes in parameters. When calculating
the probabilities of default and the credit spreads of the
different tranches of a CFO, one should take into con-
sideration the non-Gaussian behavior of the returns from
the pool of hedge funds. As we shall show later, those
credit spreads are directly related to the percentiles of the
underlying portfolio distribution.

In our pricing model we will assume that returns
from the pool of hedge funds follow a Covariance-
Switching (CS) Stochastic Process which is defined in the
Appendix. This framework allows us to incorporate two
well known characteristics from the return series of hedge
funds: first, the skewed and leptokurtic nature of the mar-
ginal distribution functions, and second, the asymmetric
correlation or correlation breakdown phenomenon
(Longin and Solnik [2001]). As we will later prove, the
correlation between the different hedge funds depends
on the direction of the market. For instance, correlations
tend to be larger in a bear market than in a bull market.

The structure of this article is as follows. Providing
empirical evidence of the existence of correlation regimes,
in Section 2 we present the Covariance-Switching process
as the model for the profit and loss function for a pool of
hedge funds and we outline some of their properties. The
model for valuing a CFO is presented in Section 3, and
in Section 4 we illustrate the strong parameter depen-
dence with an example of a hypothetical CFO based on
the S&P CTA index. This methodology can be applied
to other daily hedge fund indexes such as the Dow Jones
Hedge Fund Strategy Benchmarks and others. Section 5
contains our conclusions.

POOL OF HEDGE FUNDS MODEL

Hedge funds in general follow dynamic investment
strategies using a variety of assets. Typically the investment
process is not transparent and in most cases knowledge

about future cash flows to be generated by the fund may
be closely guarded. Hedge funds are largely unregulated
because they are typically limited partnerships with fewer
than 100 investors, which exempts them from the Invest-
ment Company Act of 1940. Offshore hedge funds are
non-U.S. corporations and are not subject to SEC regu-
lation. This limited regulation allows hedge funds to be
extremely flexible in their investment options. Hedge funds
can use short selling, leverage, derivatives, and highly con-
centrated investment positions to enhance returns or reduce
systematic risk. They can also attempt to time the market
by moving quickly across diverse asset categories. Hedge
funds attract mainly institutions and wealthy individual
investors, with minimum investments typically ranging
from $250,000 to $1 million. Additionally, hedge funds
often limit an investor’s liquidity with lock-up periods of
one year for initial investors and subsequent restrictions
on withdrawals to certain intervals. Specific investments
made by hedge funds are often carefully guarded secrets.
This lack of transparency may make it difficult for a fund
of hedge funds manager to assess the fund’s aggregate expo-
sure to a particular investment on a portfolio basis. It also
presents a challenge to the fund manager attempting to
monitor a particular hedge fund’s adherence to its adver-
tised style or investment approach. However in certain
cases the transparency issues indicated above can be alle-
viated if the manager allows separate accounts. In order to
account for the plethora of hedge fund and CTA strate-
gies and the speed at which a given fund’s composition
can be changed, we model the alternative assets to exhibit
more exotic distributions than the Gaussian one, displaying
asymmetric and leptokurtic returns.

As is the case with most diversified portfolios, fund
of hedge funds reduce the numerous types of risks arising
from individual hedge funds by diversifying both across
strategies as well as the number of funds in each strategy.
Both types of diversification reduce risk, but because of
the potential for style drift and a rapid total loss of value
in a single fund, diversification across funds is especially
important. Diversification is most effective for assets that
exhibit low correlations in value over time. Fund of hedge
funds’ managers pursuing a low-volatility strategy seek to
assemble a portfolio of relatively uncorrelated assets.
Unfortunately, in times of market distress, such as the
second half of 1998, previously uncorrelated hedge funds
or CTAs can become highly correlated for short periods.
This phenomenon is often called correlation breakdown.
Evidence of this is presented in Exhibit 2, which shows

WINTER 2006 THE JOURNAL OF ALTERNATIVE INVESTMENT 3



the correlation matrices between the return series of hedge
fund managers under tranquil and distressed regimes.
During tranquil periods correlations are lower, whereas
during periods of market distress, the asset returns become
highly correlated, with the magnitudes of off-diagonal
correlation values being close to one in absolute terms.
Therefore, diversifying amongst different assets or markets
in times of market distress was less effective at reducing
risk than many participants had hitherto believed. Arti-
cles exploring the contagion phenomenon include Harvey
and Viskanta [1994]; Longin and Solnik [2001], and
Koedijk and Campbell [2002].

In order to capture both the unidimensional lep-
tokurtic and asymmetric nature of hedge fund returns
and the correlation breakdown phenomenon, we select
the Covariance-Switching Stochastic Process (CS process)
for modeling the returns of a pool of hedge funds from
the range of parametric alternatives to a Geometric
Brownian Process. With this election we develop a very
tractable model (calculations using this often closely
resemble those using a Brownian Process) and allow for
a good adjustment to market data. Regime switching
models have been used before in the field of finance but
mainly in its univariate version (see Yao, Zhang and Zhou
[2003] for option pricing and Choi [2004] for interest
rate modeling). Moreover, regime switching models have
the theoretical appeal that by adding together a sufficient
number of components, any multivariate distribution
may be approximated with reasonable accuracy. With an

infinite number of contributions, any distribution can be
reconstructed exactly.

A general CS is defined through its stochastic dif-
ferential equation as follows:

Definition: Xi(t) follow a covariance switching
process with parameters (p,λ,µ, µ0

i, µ1
i, σi

.,0,σi
.,1) if the dif-

fusion process can be represented as:

(1)

Where Jt is a jump process (see appendix for details),
i = 1, ...n, j = 1, ...d, Wt is a n-dimensional vector of
independent Brownian motion processes, which are inde-
pendent of Jt. Moreover, are constants (k = 0, 1;
i = 1, .., n; j =1, ..., n).

In this work the vector of hedgefunds will be
assumed CS(p,λ,µ, σ .,0,σ .,1) under the historical measure
(P–measure). Notice no jump in the drift is assumed, and
then they are CS(p,λ, r, σ .,0,σ .,1) under the risk neutral
measure (Q–measure). Therefore the returns will follow
CS(p,λ,µ, µ.,0,µ.,1, σ .,0,σ .,1) under P and CS(p,λ, r,µ.,0,
µ.,1, σ .,0,σ .,1) under Q (see appendix for details).
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but a discrete approximation that leads to a Gaussian mix-
ture distribution, providing an intuitive interpretation of
CS. For example, taking an increment ∆t = 1 then a dis-
crete approximation to the CS density would be the den-
sity function of a mixture of two multivariate Gaussians:

(2)

where µi =µ+ µi and Σi =σ .,i .σ .,i are the i-th means vector
and the i-th variance-covariance matrix. If the given
Gaussian mixture GM distribution were used to describe
the monthly returns of a portfolio, with the first Gaussian
one could model the tranquil regimes and with the other
the distressed ones. Moreover, the parameter p could be
interpreted as the probability of having a tranquil month
while 1 – p would be the probability of a distressed
month. Unfortunately, GM is not the conditional dis-
tribution of a CS process (see appendix), the main dif-
ference between GM and the conditional distributions
of CS being that for CS, p would be a function of time
whose path affects the gaussianity of the components in
the mixture.

Fitting parameters to a Covariance-Switching Process
has not been explored in great detail in the literature. Few
articles address the unidimensional case (see Choi [2004]
and Chourdakis [2002]) but none, as far as we know, deals
with multidimensional situations. Therefore we use an ad-
hoc algorithm based on a multivariate test of gaussianity.
The algorithm focuses on detecting the moments where
a jump has occurred, and then uses the samples from tran-
quil and distress scenarios to estimate standard multidi-
mensional Gaussian processes. As a first pass, we define a
distressed month as a month where any of the returns of
the portfolios’ hedge funds is greater in absolute value than
two standard deviations, and a tranquil month is when all
of them are smaller. Then we add or remove sample points
in order to create two groups where the hypothesis of
multidimensional gaussianity is accepted.

CFOMODEL

In our proposed model we make the following
assumptions. First, we consider a single period model,
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typically a year, in which distributions of random vari-
ables are sufficient to specify the model. Furthermore, we
suppose that returns of the pool of hedge funds follow a
Covariance-Switching process CS(p, λ, r, µ.,0, µ.,1, σ .,0,
σ .,1). Second, we assume that there is no risk of default
in the pool of hedge funds, therefore the portfolio’s profit
and loss function will be only market driven. This assump-
tion is reasonable insofar as the fund of hedge funds does
not contain a high proportion of speculative grade hedge
funds, so the probability of default of each hedge fund
is not relevant. Besides, introducing more complexity
in the model will result in an increased number of para-
meters, and even with the simple model we propose,
we already have large confidence intervals, as we show
later.

One could adopt the more realistic but rather
abstract view that many hedge funds are nothing but a
junior tranche of a massive credit derivative, in recog-
nition of their propensity to default (as was the case of
Long Term Capital Management, Beacon Hill, and more
recently, Amaranth, among others). From this view-
point, the tranche of a CFO on a fund of hedge funds
will be come a second order credit derivative, analog of
a CDO squared. The analysis of this, to which this dis-
cussion will provide a frame of reference, is left to a
later study. However, this second derivative nature of a
fund of funds CFO only hightens the need to study
non-gaussian dependence behavior among the hedge
funds, as dependence will not behave linearly in the
tails of the distribution.

Let us introduce some notation:

• S0
i and Si are the initial and end values of the i-th

hedge fund in the pool, 1 < i < n.
• π and π0 are the initial and end values of the port-

folio.
• Ri is the return of the i-th hedge fund.
• ni is the number of units invested in the i-th

hedge fund and θi is the monetary quantity
invested, so that θi = niS

0
i.

• PL = π– π0 is the profit and loss of the portfolio
and RPL = is the relative profit and loss.

• Im is the quantity invested by tranche m, 1 ≤ m ≤
M. And Dm + 1= is the relative cumula-
tive quantity invested, DM+1 = 0.

• The default rate r ∗ is given by Lm = Imer∗ where
Lm is the undertaken future cashflows in one year
of tranch m:

Σi
m Ii

=
−
1
1

0π

π π
π
− 0

0

WINTER 2006 THE JOURNAL OF ALTERNATIVE INVESTMENT 5



(3)

• The recovery rate, fm of tranche m, would be

• r is the risk free rate.
• sm = r∗– r is the default spread.

Consider a portfolio πwith underlying hedge funds
S1, ..., Sn, each with ni positions. Its mark-to-market is
given by:

(4)

and its profit and loss return is given by:

(5)

The tranche m will drop in default if:

That is, if the mark-to-market of the portfolio at the
end of the period is less than the invested quantity of the
m – 1 tranche of less seniority, then the m-th will default.
We can express this inequality in terms of the relative profit
and loss and the relative weights in each tranche:

Note that D1 = 0. Therefore the probability of default
from the m-th tranche, PDm, equals:

PDm = P(RPL< Dm+1) (6)

This equation relates the probability of default to
the profit and loss distribution function of the underlying
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pool of hedge funds. Basically the one-year probability
of default is related to the one-year VaR of the collateral
portfolio. Under the assumption that the returns of the
different hedge funds, Ri, follow a unidimensional CS
process CS , using a result pre-
sented in appendix, the profit and loss of the portfolio
follows itself a unidimensional CS process with parame-
ters CS(p, λ, Σd

i=1θi µ, θ ⋅ µ0, θ ⋅µ1, θ ⋅σ0 ⋅ σ0′ ⋅ θ ′, θ ⋅ σ1 ⋅ σ1′⋅
θ′). Hence, in order to calculate the probabilities of default
of the different tranche, we need only calculate the per-
centiles of a unidimensional CS process. Exhibit 3 pre-
sents a schematic picture of the model.

Moreover we can obtain the distribution function
of the recovery rate of the tranche m, fm, as:

(7)

(8)

Subsequently, we can compute the spread of the
m-th tranche as the discounted expected value of the
one-year cashflow Lm under the risk-neutral probability Q:

(9)

We have to take into account that the yield spread between
a corporate bond and an otherwise identical bond with
no credit risk reflects the expected actuarial loss, or annual
expected loss given default, plus a risk premia reflecting,
for example, liquidity risk. It is possible to calculate the
probability of default and the spread of tranche m; details
are given in the appendix.
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A SAMPLE CFO

As explained before, CFOs are products which have
not had too much impact among investors. This fact may
be explained by the huge variability of the probability of
default with respect to market conditions. To illustrate
this feature, we analyze a CFO with the following char-
acteristics: There is a total investment of $1 million dol-
lars distributed within five tranches with weights 0.4976,
0.13, 0.0398, 0.065 and 0.2676 respectively. The tranche

with the 26% is the equity tranche and the tranche with
the 49% is the typically AAA rated tranche. These weights
are in agreement with market conventions and were used
in the first CFO created, Diversified Strategies CFO SA
DSCFO1. With these assumptions, the limiting losses
would be equal to D6 = 0, D5 = –0.2676, D4 = –0.3326,
D3 = –0.3724 and D2 = –0.5024.

The pool of Hedge Funds is chosen to be the fol-
lowing six Hedgefunds: BDC Offshore Fund Ltd (A),
Kassirer Market Neutral, Mapleridge Fund LP, New
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Ellington Overseas, Recap Inter and Styx International
Ltd. We work with monthly data returns from Jan-2001
to Oct-2005. The investment in each hedge fund is equal
to 1/6M$.

First we estimate the parameters of our model using
the method proposed in the appendix. Notice that hedge
funds report monthly returns instead of daily, leading to
a lack of data. Our method is effective because it reduces
the number of parameters, allowing for more reliable esti-
mations and accurate intervals for the probabilities of
default or for the spread calculations favoring the bid and
offer pricing process.

In Exhibit 4 we present the estimations of the vari-
ances for all CTAs returns in the distressed and tranquil
regimes and the mean under the historical measure. Vari-
ances are greater in distressed than in tranquil regimes. In
Exhibit 5 we present the estimated correlations in the tran-
quil and distressed regime. One can observe the correla-
tion breakdown phenomenon. Finally the proportion of
tranquil months converges to 0.844 as t approaches infinity.

Using these estimations, we can calculate the para-
meters of the monthly relative profit and loss portfolio
returns under the P-measure. Results are µ= 0.101, σ0 =
0.042, σ1 = 0.089, p = 0.867, λ = 1.029. In order to get
the yearly returns distribution one needs to multiply
monthly means and variances by twelve. With these results,
using simulations and Equation (2), we are able to calcu-
late the probabilities of default of the different tranches.
In Exhibit 6 we can see that the equity tranche has a one-
year probability of default of 19.5% and the most senior
tranche a probability of default of 0.03%. Moreover we
report the spread over the risk free rate, supposed to be
1%. Therefore a mezzanine tranche investor should be
expecting a spread of 2.3% and the most senior tranche
investor should be given a spread of 4.85 basis points. We
do not report a spread value for the equity tranche because
usually the yearly coupon on this tranche depends on the
final portfolio value. 

PARAMETER SENSITIVITIES

Up to now we have calculated the probabilities of
default of the different tranches from the CFO according
to market conditions during the period of Jan-2001 to
Oct-2005. However, how would those probabilities have
changed if market conditions had been slightly different?
To answer that question we recalculate the probabilities
of default, changing the probability p of a jump in Equa-
tion (1). In this way we measure the effect in default prob-
abilities of  a higher probability of being in a distressed
regime. Therefore we valuate the CFO for a grid of prob-
abilities in the interval from 0 to 1. Exhibit 7 shows that
the probabilities of default spread over a substantial range
when changing the probability of a distress month 1– p
(market conditions). For example the mezzanine tranche
probability of default could go from 2% to 9%. In Exhibit 8
we report the sensitivities of the spread yield to the market
condition parameter p, which present a similar behavior
to probabilities of default. In both cases a confidence
interval for p could be attractive as a reliability measure.
A good proxy for the confidence interval of the para-
meter p can be obtained using the binomial distribution,
for example the 95% confidence interval for p ranges from
0.725 to 0.926, therefore the spread confidence interval
is (1.9%, 3.8%). As a consequence investors could act with
foresight when investing in this type of collateralized fund
obligations.

CONCLUSION

A covariance switching multidimensional process was
proposed and studied for the pricing of collateralized fund
obligations (CFO). This process presents several desirable
properties, such as closeness under linear transformation.
This implies, in particular, that marginals and portfolios
will belong to the CS family of processes. Another inter-
esting property of this process is its simplicity for providing
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Mean and Variances

R1 R2 R3 R4 R5 R6

µ 0.012 0.0042 0.00520 0.0095 0.0073 0.00735

σ2
t 0.0052 0.0039 0.0136 0.0078 0.0114 0.00313

σ2
d 0.0186 0.001 0.0215 0.0127 0.021 0.00654



cumulative distribution probabilities in the unidimensional
case, which enables us to compute portfolio cumulative
probabilities by simulating a jump process. A method to
estimate the parameters was also proposed. An empirical
analysis shows a better than Gaussian fitting to a time series
vector of hedgefunds; the large differences for the covari-
ance matrices in tranquil and distress periods not only sup-
port the stylized facts described in the literature regarding
leptokurtic unidimensional behaviors, but also the reported

Tranquil Correlation
R1 R2 R3 R4 R5 R6

1 0.0497 0.046 –0.21 0.261 0.26

1 0.0072 –0.033 0.041 0.040

1 –0.031 0.038 0.037

1 –0.172 –0.17

1 0.21

1

correlation breakdown. We find that because of the lack
of transparency characteristic of hedge funds, as well as the
unavailability of data, confidence intervals in probabilities
of default and credit spreads are high enough to burden
CFO proliferation. For example, we find a 95% credit
spread interval of 1.9%–3.8%.
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E X H I B I T 6
Estimated Probability of Default and Spread Yield
for the Tranche

E X H I B I T 7
Sensitivities of Probabilities of Default to Market
Conditions

E X H I B I T 8
Spread Yield Sensitivities to Market Conditions

Lambdas in Factor analysis

R1 R2 R3 R4 R5 R6
λ0 0.564 0.088 0.082 –0.37 0.46 0.458
λ1 0.862 0.0481 0.0154 –0.697 0.981 0.346

Distress Correlation
R1 R2 R3 R4 R5 R6

1 0.0415 0.132 –0.6 0.85 0.30

1 0.0074 –0.033 0.047 0.017

1 –0.108 0.15 0.053

1 –0.69 –0.24

1 0.34

1

m 1 2 3 4 5
PDm 19.56 3.84 2.6 0.65 0.03
sm 4.85 2.3 2.1 1.14 0.1



A P P E N D I X
Covariance-Switching Process

A Covariance-Switching process is presented in this 
section.

We first define a jump process Jt ∈ {0, 1}. P[∆Jt ∈ – 1|
Jt–=1] =d(t), P[∆Jt ∈ 1| Jt– = 0] = u(t).

The law of a jump Jt is described by:

The intensity of jumps: λ(t)dt
The law of the jumps: K(t, dy) = P [∆Jt ∈dy| Jt–].

With previous notation, it follows:

K(t, dy) = P[∆Jt ∈ dy| Jt -]

= Jt – [(1 – d(t))δ0+d(t)δ–1](dy)+(1–Jt – ) [(1

– u(t))δ0 + u(t )δ1](dy)

where δx(dy) denotes the dirac delta. It is known that Jt = J0 +
∫t0 ∫E yλ(s)K(s, dy)ds + J d

t, where J d
t is a local martingale (purely

discontinuous martingale) such that J d
0 = 0 and d〈 J d

t, M 〉 = 0
for any continuous local martingale M.

Remark: Notice that ∫E yλ(s)K(s, dy) = Js – (–d(s)) + (1 – Js–)u(s).
Then

Moreover,

Let us called q(t) = E [ Jt | J0 ], then:

(10)

Notice that q(t) provides the probability of Jt = 1 given
information up to t = 0. For simplicity, we assume the following
parameters: λ(t) = λ, u(t) = p, d(t) = 1 – p, which leads to

q(t) = J0 ⋅ e–λt + p(1 – e–λt ) (11)

Definition: Xi (t) follow a covariance switching process
with parameters (p, λ, µ, µi

0, µi
1, σi

.,0, σi
.,1) if the diffusion process

can be represented as:

q t J s u s e ds
s r u r d r dr

t

( ) ( ) ( ) ( )( ( ) ( ))= +
 ∫ +∫0

0

0λ λ











∫ +. e
t s u s d s ds– ( )( ( ) ( ))0 λ

E J J J s u s d s u s E J Jt s[ | ] ( ) ( ( ) – ( ( ) ( )) [ | ])–0 0 0= + +λ dds
t

0
∫

J J J s d s J s u s ds Jt s s t= + +( ) +0 1– –(– ( ) ( )) ( – ) ( ) ( )λ λ dd
L

t s

t

J J s u s d s u s J ds J

0

0
0

∫

∫= + + +λ( ) [ ( ) – ( ( ) ( )) ]– tt
d

(12)

Where Jt is a jump process defined previously, i = 1, …n,
j = 1, …d, Wt is a n-dimensional vector of independent Brownian
motion processes, which are independent of Jt. Moreover, σi

j,k,
µi

k are constants (k = 0, 1; i = 1, …, n; j = 1, …, n).

Property 1: If P (t) = Σd

i=1
ai ⋅ Xi(t), where Xi follows a CS

process with parameters (p, λ, µ, µi
0, µi

1, σ i
0, σ i

1) then P (t) fol-
lows a covariance-switching process with parameters (p, λ, Σd

i=1
aiµ, a ⋅ µ0, a ⋅ µ1, a ⋅ σ0 ⋅ σ0′ ⋅ a′, a ⋅ σ1 ⋅ σ1′ ⋅ a′ ).

Process for the underlying hedgefunds

Si(t) follow a covariance switching process with parame-
ters (p, λ, µi, σi

.,0, σi
.,1):

Where P-historical measure, Jt is the jump process defined
previously, i = 1, …n, j = 1, …d, Wt is a n-dimensional vector
of independent Brownian motion processes, which are inde-
pendent of Jt. Moreover, σi

j,k are constants (k = 0, 1; i = 1, …,
n; j = 1, …, n).

We assume that the jump process does not change with
a change of measure (see Merton [1974] for an explanation of
the plausibility of this assumption), therefore if Q is the risk-
free measure then,

Property 2: Assumes Xi(t) = ln Si(t) then, by Ito’s lemma,
Xi(t) = rt – 1–2 ∫ t0 σi(s) ⋅ σi(s)′ds + ∫ t0 σi(s) ⋅ dWQ(s).

Remark: The distribution of X(t) = (X1(t), …, Xd(t))
conditional on the history of Js for 0 ≤ s ≤ t, under the Q-mea-
sure, is multivariate Gaussian with mean and volatility as fol-
lows (tj denotes the time of a jump, n-number of jumps, both
known under the assumption):

dS t
S t

rdt t dW ti

i
i

Q( )
( )

( ) ( )= + ⋅σ

dS t
S t

dt t dW t

t J

i
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i i

P

i t i
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For example:

where the i component of µ(k) (k = 0, 1) is (r – Σd

l=1
(σi

l,k)2) ⋅ t,
while the i,j component of Σ(k) is Σd

l=1
(σi

l,k) (σj
l,k) ⋅ t.

These features suggest that a change in Jt can be seen as
a change in the market conditions, leading to a change in trend
not only for the volatility of the hedgefunds but also the cor-
relation among them.

Property 3: Assumes Π(t) = Σd

i=1
ai ⋅ Xi(t), Σ

d

i=1
ai = 1, then,

by Ito’s lemma, dΠ(t) = [r – Σd

i=1
aiσi(t) ⋅ σi(t)′] dt + [Σd

i=1
aiσi(t)] ⋅

dW Q(t). Moreover, the distribution of Π(t) conditional on
observing the history of Jt is normal with the following mean
and volatility:

(13)

(14)

Where Ft = ∫ t0 Jsds.
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Remark: The distribution of Π(t) (given Π(0)) does not
fit into a known family (unless conditional on Jt); this is not a
drawback for pricing purposes, expectations can be computed
by simulating the jump process Jt. i.e., for CFO pricing, we
can proceed as follows:

(15)

Where G(Ft) = , A, B, C, E
were defined in property 3. Then we simulate paths of J (Mon-
teCarlo) in order to compute G(Ft).

Estimation

Hedge funds report returns on a monthly basis, leading
to a lack of data for estimation purposes. Therefore it becomes
necessary to consider multivariate models with as few parame-
ters as possible. One way to achieve this is by describing the
dependence structure of the underlying Multivariate Brownian
processes using factor analysis.

The parameters of the model are estimated using the fol-
lowing two-step approach:

1. Search for the times where a jump has occurred. Here
we start with an initial guess for distress months described
before, then a sample point is removed if a test rejected
the gaussianity hypothesis. We stopped as soon as gaus-
sianity is accepted. Knowing the distress and the tranquil
months allows us to compute the parameters of the jump
process (p, λ) by fitting the theoretical probability path
of a tranquil months to the empirical probability path:
From Equation (8), the theoretical probability of a tran-
quil month at time t given J0 = 0 is:

q(t ) = p (1 – e–λt )

The empirical probability would be: (t) = Σt

i=1
where NT(t) is the number of tranquil months by t.
Therefore fiting the theoretical to the empirical we get:

p = 0.867
λ = 1.029

2. Factor analysis is used for estimating each of the covari-
ance matrices for tranquil and distress events. We use
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both sample data found in step 1 (returns from tranquil
months and from distress months). Specifically, we pro-
pose a 1 factor model as follow:

where c i is the correlation matrices under tranquil (i =
0) and distress (i = 1) conditions. λ0, λ1 are constant vec-
tors and B i are diagonal matrices with diagonal

This reduces the total number of parame-
ters to be computed for the covariance matrices from n2 +
n to 4n. Means are computed using standard estimators.
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